

HIGH-EFFICIENT COMBINED HEAT AND POWER FACILITY UTILIZING RENEWABLE SOURCES (OHB II - LINE K1)

Safety first

Site safety

Covid measures

Masks

Wash hands

Distancing

General information on public procurement

Procurement regime

Over-the-limit utilities contract for construction works awarded in a negotiated procedure with prior publication as per provisions of Section 60 of the PPA.

Main stages

- > Qualification *completed*
- Call for indicative tenders ongoing
- Negotiation of indicatives tenders
- Call for final tenders
- Evaluation of final tenders

Important note:

All the information provided during site visit are exclusively of informative nature and therefore are not binding to the contracting authority.

Evaluation criteria

	Evaluation criteria	Weight
K.1	Overall financial advantageousness	70 %
К.2	Quality of performance	25 %
K.2.1	Proposed technology and solution concept	75 %
K.2.2	Technical guarantees	15 %
K.2.3	Environmental parameters	10 %
К.3	Layout of the construction and technological solution	5 %

The most important evaluation parameters

- Net present value of the project in 7 years
 - Significant impact of balance price/efficiency
 - Potential bonus for shorter construction period
- > Well specified, comprehensive and robust solution
- > Tender with detail descriptions (design, execution, management)

1. Základní provozní předpoklad / General operational assumption			
1.1 Zpracovaný odpad / Proccessed waste	tun/rok (tons/annum)		
1.2 Výhřevnost odpadu / Waste LHV MJ/kg			
1.3 Roční disponibilita / Annual availability	h		
2. Roční bilance produkce energií / Annual balance of energy production			
2.1 Dodané teplo / heat delivered	GJ		
2.2 Čistá výroba el.energie / net electricity production	MWh		

3. Roční výnosy / Annual income	
3.1 Prodej tepla / Heat sales	
3.2 Prodej elektriny / electricity sales	
3.3 Celkem / In total	

4. Roční náklady provozu / Aannual operational expenditure			
4.1 Regular maintenance			
4.2 Wear parts			
4.3 Spotřeba vody - kotel / w ater consumption - boiler			
4.4 Spotřeba pitné vody / fresh w ater consumption			
4.5 Spotřeba močoviny / urea consumption			
4.6 Spotřeba nehašeného vápna / quick lime consumption			
4.7 Spotřeba hydroxidu vápenatého / hydrated lime			
consumption			
4.8 Spotřeba aktivního uhlí / active carbon consumption			
4.9 Spotřeba stlačeného přístrojového vzduchu / instrument			
air consumption			
4.10 Spotřeba stlačeného procesního vzduchu / process air			
consumption			
4.11 Odpad - škvára / IBA residue			
4. 12 Popel z kotle a zbytky ze systému čištění spalin / Boiler			
ash and FGT residue			
4.13 *Spotřeba ostatních chemikálií / other reagents			
consumption			
4.14 Celkem / In Total			

INVESTOR DESCRIPTION

Investor description

SAKO Brno, a.s. as municipality owned company operates independently and provides services for Brno city (open-ended contract) and to others:

Collection

>

>

Municipal waste

Recyclables

Collection centers

Mixed municipal waste

- Waste collection
- Recycling
- Waste disposal by energy utilization

 Education program (schools & public)

Main company area of the operation

SAKO Brno, a.s.

Experienced operator of WtE since 1994

SAKO BRNO, a.s. – Existing Waste-to-Energy plant

Existing line K2 and K3

- Plant from 1980's, refurbished in 2010
- > 2x14 ton/h identical EfW lines
- 2 manual waste cranes
- Vertical 5-pass steam boilers, Steam parameters: 40 bar/400°C
- Extraction steam turbine, 20 MWe
- > Air-cooled condenser
- SNCR, bagfilter & semi-dry FGT system
- Production of electricity and district heating (DH), both steam and hot water

PROJECT DESCRIPTION

PUBLIC CONTRACT

Envisaged Project and Contractual structure

Project procurement phase

Project procurement phase under cooperation with experienced advisors:

- Ramboll Group A/S : technical advisor
- PricewaterhouseCoopers : financial advisor
- Legal team: MT Legal

Project structure

- Design & Build project engaged under EPC contract
- Fixed lump-sum contract

Anticipated financing structure

- Own equity in combination with corporate financing
- Subsidy from Modernization fund (in negotiation)

Site conditions

Major highlights

- Urban area (distance to residential area 150 meters)
- Limited area in place of construction
- > Parallel construction projects
- Full operation of existing facility
- Strict noise and dust requirements

Available areas for site facilities

- P1 ca. 62 m2
- P2 ca. 125 m2
- P3 ca. 1400 m2
- P4 ca. 740 m2
- P5 ca. 2100 m2;
- ➢ P6 − ca. 4500 m2;
- P7 ca. 10000 m2;

Most demanding battery limits

Investor's priorities

1. Safety first

2. Continuous operation of existing WtE plant

3. Upfront detail planning of most demanding tasks

Project scope

New K1 line

- > New boiler hall
- > 180° U turn flue gas treatment
- Extension of bunker
- Automatic cranes
- Backpressure turbine's machine hall
- Interconnection of new DH lines- DN600
- Control room relocation
- Existing auxiliaries relocation
- Existing stack utilization
- Former K1 existing space utilization

Emphasis on efficiency \rightarrow **Highly efficient CHP**

Operational energy efficiency

- Maximal utilization of residual waste energy potential
- Flue gas and cooling system waste heat utilization
- Absorbtion heat pump
- Emphasis on flexibility of heat and electricity supply

Key design basis requirements

Semi-Dry Flue Gas Treatment System and downstream LT ECO and flue gas condensation.

Air emission at stack		BATAELs			
Substance	Unit ref=(11% 0 ₂ , dry)	NEW plants	EXISTING plants	Sampling period	
Dust	mg/Nm ³	<2-5		Daily	
тиос	mg/Nm ³	< 3-10 ⁽⁶⁾		Daily	
со	mg/Nm ³	10-50		Daily	
нсі	mg/Nm ³	<2-6	<2-8	Daily	
HF	mg/Nm ³	<1 (6)		Daily 1	
SO ₂	mg/Nm ³	5-30	5-40	Daily	
NO _x (SCR, SNCR)	ma (Nm3	50-120	50-150	Daily	
SNCR, if SCR not possible	ing/initi-		up to 180	Daily	
NH₃ (SCR or SNCR) (Exist. SNCR not wet)	mg/Nm ³	2-10	2-10 (15)	Daily	
		<5-20		Daily 2, 3	
Hg	µg/Nm³	1-10		Long term sampling 2	
		<5	-20	Periodic, short term ²	
PCDD/F 5	ng _{I-TEQ} /Nm ³	<0.01-0.06	<0.01-0.08		
PCDD/F + PCB-DL 5	ng _{I & wно-теq} /Nm ³	<0.01-0.08	<0.01-0.1	Long term sampling ⁵	
PCDD/F ⁵	ng _{I-TEQ} /Nm ³	<0.01-0.04	<0.01-0.06		
PCDD/F + PCB-DL 5	ng I & WHO-TEQ/Nm ³	<0.01-0.06	<0.01-0.08	Periodic, short term	
Cd+TI	mg/Nm ³	0.005	0.005 - 0.02 Periodic, short term		
Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V	mg/Nm ³	0.01-0.3 Periodic, short t		Periodic, short term	

⁽¹⁾: HF continuous measurement may be replaced by periodic measurements if HCl emission are proven to be sufficiently stable (BAT4).

⁽²⁾: Hg continuous measurement may be replaced by long-term sampling or periodic measurements if incinerated waste Hg content proven low and stable (e.g. mono-streams of waste of a controlled composition) (BAT4).

(3): Hg ½_hr average indicative value (not BATAELs) for new plants 15-35 µg/Nm³, for existing 15-40 µg/Nm³ (BAT31).

⁽⁴⁾: Either the BATAELs for PCDD/F or the BATAELs for PCDD/F + PCBs-DL apply. PCB-DL monitoring does not apply if PCB-DL are proven to be less than 0.01 ng $_{WHO-TEQ}/Nm^3$ (BAT30).

⁽⁵⁾: The long term sampling BATAELs do not apply if the emission levels are proven to be sufficiently stable (BAT30).

Energy system - Highlights

Combined Heat & Power

- Moderate steam parameters: 400°C / 40 bar
- Efficient and flexible CHP production
- New back-pressure turbine optimized for DH production
- Increased electricity production of existing turbine by replacing in-efficient DH production with new efficient DH production
- Two-step flue gas condensation: direct and heat pump* driven which cools the flue gas to 41 °C
- Energy recovery from component cooling to DH

Civil part \rightarrow **Existing buildings**

BO 101/1 – Waste	Medium impact
Bunker	Installation of new cranes and control room and all necessary accessories (e.g. fire safety, etc.).
BO 102/1 – Boiler hall	Demolition of the dividing wall above the level of the existing boiler hoppers. Disassembly of crane cabins and fire protection equipment. Minor impact
	Linking and delivery of the slag conveyor to the slag bunker.
	Linking to service platforms and lift in required levels.
BO 103/1 – Slag	Linking/installation of new fire pumps. Small impact
treatment hall	Linking a joint drainage from the new line to the existing slag bunker.
BO 106 – Trafoes and	Wastewater linked to a slag waste-water sump. Medium impact
electrical building	Demolition of a part of the building (stair tower) for connection of the service route and removal of the slag conveyor.
BO 401 – Sorting and	Small impact
turbine hall	Installation of an independent steel platform above the existing roof structure.
BO 412 – District	Medium impact
heating station	Connection of hot water pipes for heat dissipation from the new K1 technology.
BO 108 – Maintenance	High impact
and locker room	Will need to be demoliched
building	
Building (chemical	High impact
water treatment)	Will need to be demolished.

New buildings

BO 501 – Extension of the waste bunker

BO 502 – K1

flue gas

Boiler hall and

New bunker connected to an existing bunker without new feed-in gate. All waste will be received through existing dumps.

The new bunker will be linked to the existing BO 101 via new crane tracks.

The new boiler and flue gas treatment hall will be connected to an extended bunker. All technology related to the new K1 incinerator line will be installed in this new building.

Civil part and Architecture

Major highlights

- Combination of polycarbonate and sandwich paroc panels
- Emphasis on quality and proven materials with long-term lifespan
- Integrated RGWB illumination with advance control system
- Accessible green walking roof for future visits
- United facade of new and existing building

PROJECT TIMELINE

Project timeline and day-to-day status

Activity	Start	Finish	Status
Conceptual design	04/2019	09/2019	Finalized
Architectural study	09/2019	12/2019	Finalized
Feasibility study	09/2019	11/2019	Finalized
Waste availability study	09/2019	11/2019	Finalized
Future DH delivery study	09/2019	12/2019	Finalized
Project definition	12/2019	05/2020	Finalized
EIA	08/2019	01/2021	Finalized
Zoning permission	09/2019	08/2021	Finalized
Integrated pollution prevention control permission	11/2020	11/2021	Finalized
Contracts for main utilities (waste; heat; electricity)	01/2020	12/2021	Finalized
Public procurement preparation	10/2019	09/2021	Finalized
Finance raising and Insurance process	01/2020	08/2022	Ongoing
Public procurement (Owner's engineer)	10/2021	04/2022	Ongoing
Public procurement (Contractor)	07/2021	08/2022	Ongoing
City council approval procedure	08/2022	09/2022	
Project construction	10/2022	10/2025	

SAKU

SAKO Brno, a.s. Jedovnická 2, 628 00 Brno, Česká republika tel.: +420 548 138 217 mobil: +420 603 140 618 e-mail: reditelstvi@sako.cz, www.sako.cz

This document is confidential and cannot be used in any way without the written consent of the company SAKO Brno, a.s.